记者:后摩尔时代半导体材料的技术方向会有哪些发展?有哪些演进的方向?
周济院士:近期发展可能还需要最大程度上基于现有制程和硅基材料,通过结构改进和器件创新,如三维集成、异质集成、类脑结构以及更高密度的封装等,尽可能维系摩尔定律的趋势,目前看潜力依然存在;中期发展则可能寄希望于基础材料的技术突破,像宽禁带半导体或一些二维半导体材料等如果能取代硅成为集成电路基材,则有望使集成电路技术上一个新台阶;而远期则基于新原理的新一代信息技术,如全光信息、量子信息、分子电子学等,其技术形态可能会有大的改变。
记者:在后摩尔时代从应用角度来看,半导体材料工艺最大的发展机遇在何处?
周济院士:这个问题需要从两个方面分析。首先,在目前的集成电路技术系统框架下,与其谈材料的机遇,不如谈挑战。高性能材料和材料工艺的提高一直是有强烈需求的,因为材料性能越高,则越接近器件设计的理论预期,越容易实现精准设计的高性能器件和电路。从材料工艺上看,如何获得性能更优、纯度更高、缺陷更少、单晶尺寸更大、更易实现加工的半导体材料,过去、现在. 和将来将一直是集成电路技术发展的瓶颈。另一方面,假如我们有可能跳出目前的硅基技术框架,通过材料创新实现集成电路技术的突破,的确有可能找到一些新机遇,如宽禁带半导体、碳基半导体等,但目前还无法做出精准预测。这些新材料能否成为技术主流,究竟能走多远,既依赖于材料的本征特性,也依赖于多方面的支撑条件,如材料生长技术、电路设计、制程工艺等。总而言之,今天的信息技术很难像70多年前半导体的发现那样,仅仅靠一种材料在短时间内带来翻天覆地的变革。
记者:宽禁带半导体将突破传统材料的哪些瓶颈?为产业带来哪些新的可能?
周济院士:相对于硅材料,宽禁带半导体具有很多优点,特别是在大功率、高频、高速、高温应用方面具有优异的表现,可填补硅基材料无法工作的领域。
假如有一天宽禁带半导体在材料生长、器件工艺方面均能到达和目前硅技术同.样的成熟度而取代硅,无疑会为集成电路技术注入新动能。
记者:有认为硅基材料潜力巳被挖掘殆尽,石墨烯将取代硅基材料,您怎么看?
周济院士:石墨烯作为-种二维半导体材料,具有非常高的迁移率和很多奇异的电子特性,在电子信息技术领域的确有很诱人的应用前景。但作为一种基本半导体材料,还需要满足很多其他方面的要求,如是否易于进行性能剪裁以获得像硅材料和器件一样衍生出的丰富功能、能否实现器件的大规模集成化等。在这些方面,我认为,断言石墨烯会取代硅目前为时过早,即便有一天硅被其他材料所取代,石墨烯也不一定是唯一选择。
记者:超材料将如何延续半导体技术?未来将有哪些重点应用领域?
周济:超材料是我个人目前的-一个主要研究方向。我一直认为超材料不仅仅是一类材料,它是一种通过人工结构突破现有材料性能局限的方法。这种方法在半导体技术领域中有可能会有- - 些应用,比如利用超材料透镜,理论上讲可以实现无像差的成像,这样的技术如果用到光刻机上,就有可能用较长波长的光实现较高的加工精度,可能使光刻机的技术门槛大幅度降低。当然,我认为在后摩尔时代,超材料最有前景的领域是全光信息技术。
记者:在后摩尔时代,中国本土的半导体技术,是否能够通过材料技术占领半导体技术的制高点?
周济:这种可能性是有的。与器件制程和装备相比,材料的产业链和创新 链相对较短,涉及的问题也相对单纯一些。我们国家的材料科技人才资源在世界各国是规模最大的,各种科研产出指标也是最高的。
记者:经济高质量发展急需高水平基础研究的供给和支撑。您认为在加强半导体材料领域的基础研究方面,该如何做?有哪些要点需要注意?
周济院士:半导体材料的基础研究非常重要,我们国家也一直非常重视。我认为目前最紧迫的问题是要澄清基础研究的目的。我们有一种误解,认为基础研究的产出必须用学术论文来体现。这样的观念以及由此形成的政策导向,对像半导体材料这样相对成熟的研究领域的伤害是非常大的,因为这将驱使科学家不得不去追求华而不实的事情。其实基础研究应该定位在基础科学问题上,就半导体材料而言,半导体物理问题已经相当清楚,但像大尺寸、高质量半导体材料的工艺原理,如在特定环境中的半导体单晶生长热力学问题、如何有效控制半导体中的缺陷、如何提高材料的纯度等,这些至关重要的基础科学问题,然而却因无法出文章而鲜有人问津。